Нахождение похожих подпоследовательностей временного ряда с помощью многоядерного сопроцессора Intel Xeon Phi

Александр Вячеславович Мовчан

Научный руководитель: М.Л. Цымблер

Основные обозначения

- ▶ Временной ряд (time series) T упорядоченная последовательность t₁, t₂, ..., t_N (где N — длина последовательности) вещественных значений, каждое из которых ассоциировано с отметкой времени.
- Подпоследовательность (subsequence) T_{ij} временного ряда T представляет собой непрерывное подмножество T, начинающееся с позиции i и заканчивающееся в позиции j.
- ▶ Запрос (query) Q последовательность, длина которой меньше N.

Применение временных рядов

Поиск похожей подпоследовательности

Best-match search: результатом является подпоследовательность $T_{ij} \in T$, для которой выполнены следующие условия:

 $\forall T_{mn}$

- ▶ $|T_{mn}| = |T_{ij}| = |Q|$
- $\blacktriangleright D(T_{ij}, Q) < D(T_{mn}, Q)$

Local-best-match search: результатом является множество подпоследовательностей $\{T_{ij} \in T\}$, для которых выполнены следующие условия:

- $\blacktriangleright |T_{ij}| = |Q|$
- $\blacktriangleright D(T_{ij}, Q) < \mathcal{E}$
- $\blacktriangleright D(T_{ij},Q) < D(T_{i-1j-1},Q)$
- ▶ $D(T_{ij}, Q) < D(T_{i+1j+1}, Q)$

Проект MedMining

Интеллектуальный анализ данных физиологических исследований профессиональных спортсменов

Классификация контуров

Методы поиска похожих подпоследовательностей

Построение индекса

- Многомерные прямоугольники
 - для каждой подпоследовательности вычисляется преобразование Фурье
 - строится индекс по этим данным
 - выполняется поиск по индексу с помощью многомерных прямоугольников

Методы поиска похожих подпоследовательностей

Построение индекса

- Суффиксные деревья
 - по временному ряду строится суффиксное дерево (индекс)
 - выполняется запрос к суффиксному дереву
- Префикс запроса
 - индекс строится как в случае многомерных прямоугольников
 - выполняется поиск по индексу по префиксу запроса

- Последовательное сравнение
 - для каждой подпоследовательности осуществляется сравнение

- Последовательное сравнение
 - для каждой подпоследовательности осуществляется сравнение

- Последовательное сравнение
 - для каждой подпоследовательности осуществляется сравнение

- Последовательное сравнение
 - для каждой подпоследовательности осуществляется сравнение

Обзор работ по поиску похожих подпоследовательностей на основе DTW

Последовательные алгоритмы

- Исследования, подтверждающие преимущество DTW перед другими мерами схожести в различных предметных областях.
 - Ding et al. Querying and mining of time series data: experimental comparison of representations and distance measures // PVLDB, 2008.
 - Fu et al. Scaling and time warping in time series querying // VLDB, 2008.
- Повторное использование результатов вычислений при подсчете DTW.
 - Sakurai et al. Stream monitoring under the time warping distance // ICDE, 2007.
- Построение индекса для поиска подпоследовательности, похожей на запрос с заранее заданной длиной.
 - Lim et al. Using multiple indexes for efficient subsequence matching in time-series databases // DASFAA, 2006.
- Построения множества индексов для для поиска подпоследовательности, похожей на один из запросов с заранее заданными длинами.
 - Keogh et al. Supporting exact indexing of arbitrarily rotated shapes and periodic time series under euclidean and warping distance measures // VLDB, 2009.

Обзор работ по поиску похожих подпоследовательностей на основе DTW

Последовательные алгоритмы

- Отбрасывание заведомо непохожих подпоследовательностей на основе предварительных оценок расстояния от запроса до подпоследовательности (lower bounding).
 - Fu et al. Scaling and time warping in time series querying // VLDB, 2005.
- UCR-DTW, наиболее быстрый в настоящее время алгоритм на основе lower bounding).
 - Rakthanmanon et al. Searching and mining trillions of time series subsequences under dynamic time warping // KDD, 2012.

Обзор работ по поиску похожих подпоследовательностей на основе DTW

Параллельные алгоритмы

- Многопоточная реализация.
 - Takahashi et al. A parallelized data stream processing system using dynamic time warping distance // CISIS, 2009.
- Реализация для кластера на базе Intel Xeon.
 - Sharanyan et al. Implementing the dynamic time warping algorithm in multithreaded environments for real time and unsupervised pattern discovery // ICCCT, 2011.
- Реализации для GPU и FPGA (по тому же принципу, что и Srikanthan et al.).
 - Sart et al. Accelerating dynamic time warping subsequence search with GPUs and FPGAs // ICDM, 2010.
- Реализация для GPU (параллельное формирование матрицы трансформации, вычисление DTW последовательно).
 - Zhang et al. Fast spoken query detection using lower-bound dynamic time warping on graphical processing units // ICASSP, 2012.
- Улучшенная реализация для FPGA.
 - Wang et al. Accelerating subsequence similarity search based on dynamic time warping distance with FPGA // ACM/SIGDA, 2013.
- Реализация для Intel Xeon Phi.
 - Movchan et al. Accelerating time series subsequence matching on the Intel Xeon Phi many-core coprocessor // MIPRO, 2015.

DTW(X,Y) = d(N,N),

$$d(i,j) = |x_i - y_j| + \min \begin{cases} d(i-1,j) \\ d(i,j-1) \\ d(i-1,j-1), \end{cases}$$

 $d(0,0) = 0; d(i,0) = d(0,j) = \infty; i = 1, 2, \dots, N; j = 1, 2, \dots, N.$

Последовательный алгоритм UCR-DTW

Особенности алгоритма

- Возможность использования для поиска в больших временных рядах (т.к. не используются индексы)
- Высокая степень параллелизма
- Высокое быстродействие
- Точный поиск
- ▶ Z-нормализация $x'_i = rac{x_i \mu}{\sigma}, i \in N$,
 - μ среднее арифметическое, σ среднеквадратичное отклонение
- DTW в качестве функции схожести

Rakthanmanon T., et al. Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping // The 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Beijing, China, 12-16 August, 2012. ACM, 2012. P. 262–270.

Ограничение DTW

Sakoe-Chiba band

Itakura parallelogram

Оценки DTW

$$u_{i} = max(q_{i-R}, q_{i+R}), \ t_{i} = min(q_{i-R}, q_{i+R}),$$

$$LB_{Keogh}(Q, C) = \sqrt{\sum_{i=1}^{n} \begin{cases} (c_{i} - u_{i})^{2} & \text{если } c_{i} > u_{i} \\ (c_{i} - l_{i})^{2} & \text{если } c_{i} < l_{i} \\ 0 & \text{в остальных случаях} \end{cases}$$
Сложность: $O(n)$

Сложность: O(n).

\blacktriangleright LB_{KeoghEC}

Для подпоследовательности C строятся последовательности U и L. $u_i = max(c_{i-R}, c_{i+R}), \ l_i = min(c_{i-R}, c_{i+R}),$

$$LB_{Keogh}(Q,C) = \sqrt{\sum_{i=1}^{n} \begin{cases} (q_i - u_i)^2 & \text{если } q_i > u_i \\ (q_i - l_i)^2 & \text{если } q_i < l_i \\ 0 & \text{в остальных случаях} \end{cases}}$$
Сложность: $O(n)$.

Последовательный алгоритм UCR-DTW

Сопроцессор Intel Xeon Phi

61 ядро, 244 нити, ≈1.2 TFLOPS, 512-bit SIMD

Сопроцессор Intel Xeon Phi

- Выполнение на сопроцессоре (Native Execution)
 - независимое исполнение на сопроцессоре
- Режим выгрузки (Offload)
 - исполнение на процессоре, выгрузка интенсивных вычислений на сопроцессор
- Симметричный режим (Symmetric Mode)
 - исполнение как приложения MPI

Параллельный алгоритм для СРИ

Параллельный алгоритм для СРИ

Производительность параллельного алгоритма для CPU

LB_Kim	O(1)
LB_Keogh	O(n)
LB_KeoghEC	O(n)
DTW	$O(n^2)$

Время загрузки данных с диска в память Xeon Phi: $\approx 300~c$

Данные: random walk, 10^9 точек

Наивный параллельный алгоритм для CPU + Xeon Phi

Наивный параллельный алгоритм для CPU + Xeon Phi

Производительность параллельного алгоритма для CPU + Xeon Phi

Данные: random walk, 10^9 точек

Улучшенный параллельный алгоритм для CPU + Xeon Phi

Улучшенный параллельный алгоритм для CPU + Xeon Phi

UCR-DTW*

Эксперименты

Аппаратная платформа

- Процессор
 - Intel Xeon X5680
 - 6 ядер по 3.33 GHz
 - 0.371 Тфлопс
- Сопроцессор
 - Intel Xeon Phi SE10X
 - 61 ядро по 1.1 GHz
 - 1.076 Тфлопс
- ▶ Данные
 - Синтетические
 - \blacksquare random walk, 10^9 точек данных
 - Реальные
 - ЭКГ, 2×10^7 точек данных (22 час. при частоте дискретизации 250 Гц)

Производительность на синтетических данных

Данные: random walk, 10^9 точек

Производительность на реальных данных

Данные: ЭКГ, 2×10^7 точек

Утилизация сопроцессора

Влияние размера очереди на производительность

До векторизации DTW

```
double DTW(a: array [1..m], b: array [1..m], r: int) {
   cost := array [1..m]
   cost prev := array [1..m]
   for i := 1 to m
     cost[i] = infinity
     cost prev[i] = infinity
   cost prev[1] = dist(a[1], b[1])
   for j := max(2, i-r) to min(m, i+r)
      cost prev[j] := cost prev[j-1] + dist(a[1], b[j])
   for i := 2 to m
      for j := max(1, i-r) to min(m, i+r)
        c := d(a[i], b[j])
         cost[j] := c + min(cost[j-1], cost prev[j-1], cost prev[j])
      swap (cost, cost prev)
```

```
return cost prev[m]
```

После векторизации DTW

```
double DTW (a: array [1..m], b: array [1..m], r: int) {
  cost := array [1..m]
   cost prev := array [1..m]
   for i := 1 to m
     cost[i] = infinity
     cost prev[i] = infinity
   cost prev[1] = dist(a[1], b[1])
   for j := \max(2, i-r) to \min(m, i+r)
     cost prev[j] := cost prev[j-1] + dist(a[1], b[j])
   for i := 2 to m
     for j := max(1, i-r) to min(m, i+r)
        cost[j] = min(cost prev[j-1], cost prev[j])
     for j := max(1, i-r) to min(m, i+r)
        c := dist(a[i], b[j])
        cost[j] := c + min(cost[j-1], cost[j])
      swap(cost, cost prev)
   return cost prev[m]
```

Влияние векторизации DTW на производительность

Сравнение с аналогами (производительность)

Sart et al. Accelerating dynamic time warping subsequence search with GPUs and FPGAs // ICDM, 2010. Длина запроса: 1024

Intel Xeon X5680 + Xeon Phi SE10X	1.44 TFLOPS
NVIDIA Tesla C1060	77.8 GFLOPS
Xilinx Virtex-5 LX-330	65 GFLOPS
NVIDIA Tesla K40	1.43 TFLOPS
Xilinx Virtex-7 980XT	0.99 TFLOPS

Сравнение с аналогами (стоимость)

Intel Xeon X5680 + Xeon Phi SE10X	1.44 TFLOPS
NVIDIA Tesla C1060	77.8 GFLOPS
Xilinx Virtex-5 LX-330	65 GFLOPS
NVIDIA Tesla K40	1.43 TFLOPS
Xilinx Virtex-7 980XT	0.99 TFLOPS

Заключение

- Разработан параллельный алгоритм поиска похожей подпоследовательности временного ряда для сопроцессоров Intel Xeon Phi
- Эксперименты показали высокую эффективность алгоритма при большой длине запроса
- Будущие исследования:
 - адаптация для решения задачи local-best-match
 - алгоритм для узла с несколькими сопроцессорами Intel Xeon Phi
 - алгоритм для кластерной системы с узлами на базе сопроцессоров Intel Xeon Phi