Нахождение похожих подпоследовательностей временного ряда с помощью многоядерного сопроцессора Intel Xeon Phi

Александр Вячеславович Мовчан

Научный руководитель: М.Л. Цымблер

Основные обозначения

- ▶ Временной ряд (time series) T упорядоченная последовательность $t_1, t_2, ..., t_N$ (где N длина последовательности) вещественных значений, каждое из которых ассоциировано с отметкой времени.
- ▶ Подпоследовательность (subsequence) T_{ij} временного ряда T представляет собой непрерывное подмножество T, начинающееся с позиции i и заканчивающееся в позиции j.
- ightharpoonup Запрос (query) Q последовательность, длина которой меньше N.

Применение временных рядов

Поиск похожей подпоследовательности

Best-match search: результатом является подпоследовательность $T_{ij} \in T$, для которой выполнены следующие условия:

- $\forall T_{mn}$
 - $|T_{mn}| = |T_{ij}| = |Q|$
 - $D(T_{ij}, Q) < D(T_{mn}, Q)$

Local-best-match search: результатом является множество подпоследовательностей $\{T_{ij}\in T\}$, для которых выполнены следующие условия:

- ▶ $|T_{ij}| = |Q|$
- $D(T_{ij}, Q) < \mathcal{E}$
- ▶ $D(T_{ij}, Q) < D(T_{i-1j-1}, Q)$
- $D(T_{ij}, Q) < D(T_{i+1j+1}, Q)$

Проект MedMining

Интеллектуальный анализ данных физиологических исследований профессиональных спортсменов

Классификация контуров

- Построение индекса
 - Многомерные прямоугольники
 - для каждой подпоследовательности вычисляется преобразование Фурье
 - строится индекс по этим данным
 - выполняется поиск по индексу с помощью многомерных прямоугольников

- Построение индекса
 - Суффиксные деревья
 - по временному ряду строится суффиксное дерево (индекс)
 - выполняется запрос к суффиксному дереву
 - Префикс запроса
 - индекс строится как в случае многомерных прямоугольников
 - выполняется поиск по индексу по префиксу запроса

- ▶ Последовательное сравнение
 - для каждой подпоследовательности осуществляется сравнение

- ▶ Последовательное сравнение
 - для каждой подпоследовательности осуществляется сравнение

- ▶ Последовательное сравнение
 - для каждой подпоследовательности осуществляется сравнение

- ▶ Последовательное сравнение
 - для каждой подпоследовательности осуществляется сравнение

Обзор работ по поиску похожих подпоследовательностей на основе DTW

- ▶ Последовательные алгоритмы
 - Исследования, подтверждающие преимущество DTW перед другими мерами схожести в различных предметных областях.
 - Ding et al. Querying and mining of time series data: experimental comparison of representations and distance measures // PVLDB, 2008.
 - Fu et al. Scaling and time warping in time series querying // VLDB, 2008.
 - Повторное использование результатов вычислений при подсчете DTW.
 - Sakurai et al. Stream monitoring under the time warping distance // ICDE, 2007.
 - Построение индекса для поиска подпоследовательности, похожей на запрос с заранее заданной длиной.
 - Lim et al. Using multiple indexes for efficient subsequence matching in time-series databases // DASFAA, 2006.
 - Построения множества индексов для для поиска подпоследовательности, похожей на один из запросов с заранее заданными длинами.
 - Keogh et al. Supporting exact indexing of arbitrarily rotated shapes and periodic time series under euclidean and warping distance measures // VLDB, 2009.

Обзор работ по поиску похожих подпоследовательностей на основе DTW

- Последовательные алгоритмы
 - Отбрасывание заведомо непохожих подпоследовательностей на основе предварительных оценок расстояния от запроса до подпоследовательности (lower bounding).
 - Fu et al. Scaling and time warping in time series querying // VLDB, 2005.
 - UCR-DTW, наиболее быстрый в настоящее время алгоритм на основе lower bounding).
 - Rakthanmanon et al. Searching and mining trillions of time series subsequences under dynamic time warping // KDD, 2012.

Обзор работ по поиску похожих подпоследовательностей на основе DTW

- Параллельные алгоритмы
 - Многопоточная реализация.
 - Takahashi et al. A parallelized data stream processing system using dynamic time warping distance // CISIS, 2009.
 - Реализация для кластера на базе Intel Xeon.
 - Sharanyan et al. Implementing the dynamic time warping algorithm in multithreaded environments for real time and unsupervised pattern discovery // ICCCT. 2011.
 - Реализации для GPU и FPGA (по тому же принципу, что и Srikanthan et al.).
 - Sart et al. Accelerating dynamic time warping subsequence search with GPUs and FPGAs // ICDM, 2010.
 - Реализация для GPU (параллельное формирование матрицы трансформации, вычисление DTW последовательно).
 - Zhang et al. Fast spoken query detection using lower-bound dynamic time warping on graphical processing units // ICASSP, 2012.
 - Улучшенная реализация для FPGA.
 - Wang et al. Accelerating subsequence similarity search based on dynamic time warping distance with FPGA // ACM/SIGDA, 2013.
 - Реализация для Intel Xeon Phi.
 - Movchan et al. Accelerating time series subsequence matching on the Intel Xeon Phi many-core coprocessor // MIPRO, 2015.

15 / 46

$$DTW(X,Y) = d(N,N),$$

$$d(i,j) = |x_i - y_j| + min \begin{cases} d(i-1,j) \\ d(i,j-1) \\ d(i-1,j-1), \end{cases}$$

 $d(0,0) = 0; d(i,0) = d(0,j) = \infty; i = 1, 2, \dots, N; j = 1, 2, \dots, N.$

Последовательный алгоритм UCR-DTW

Особенности алгоритма

- ► Возможность использования для поиска в больших временных рядах (т.к. не используются индексы)
- Высокая степень параллелизма
- Высокое быстродействие
- ▶ Точный поиск
- ▶ Z-нормализация $x_i' = \frac{x_i \mu}{\sigma}, i \in N$, μ среднее арифметическое, σ среднеквадратичное отклонение
- ▶ DTW в качестве функции схожести

Rakthanmanon T., et al. Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping // The 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Beijing, China, 12-16 August, 2012. ACM, 2012. P. 262–270.

Ограничение DTW

Sakoe-Chiba band

Itakura parallelogram

Оценки DTW

- ► $LB_{Kim} = \sqrt{(t_0 q_0)^2 + (t_{n-1} q_{n-1})^2}$ Сложность: O(1).
- $lackbox{L}B_{Keogh}$ Для запроса Q строятся последовательности U и L.

$$u_i = max(q_{i-R}, q_{i+R}), l_i = min(q_{i-R}, q_{i+R}),$$

Сложность: O(n).

 $ightharpoonup LB_{KeoghEC}$

Для подпоследовательности C строятся последовательности U и L.

$$u_i = max(c_{i-R}, c_{i+R}), l_i = min(c_{i-R}, c_{i+R}),$$

Сложность: O(n).

Последовательный алгоритм UCR-DTW

Сопроцессор Intel Xeon Phi

61 ядро, 244 нити, ≈1.2 TFLOPS, 512-bit SIMD

Сопроцессор Intel Xeon Phi

- ▶ Выполнение на сопроцессоре (Native Execution)
 - независимое исполнение на сопроцессоре
- ► Режим выгрузки (Offload)
 - исполнение на процессоре, выгрузка интенсивных вычислений на сопроцессор
- ▶ Симметричный режим (Symmetric Mode)
 - исполнение как приложения МРІ

Параллельный алгоритм для CPU

Параллельный алгоритм для CPU

Производительность параллельного алгоритма для CPU

LB_Kim	O(1)
$LB_{L}Keogh$	O(n)
$LB_{L}KeoghEC$	O(n)
DTW	$O(n^2)$

Время загрузки данных с диска в память Xeon Phi: $\approx 300~c$

Данные: random walk, 10^9 точек

Наивный параллельный алгоритм для CPU + Xeon Phi

Наивный параллельный алгоритм для CPU + Xeon Phi

Производительность параллельного алгоритма для CPU + Xeon Phi

Данные: random walk, 10^9 точек

Улучшенный параллельный алгоритм для CPU + Xeon Phi

Улучшенный параллельный алгоритм для CPU + Xeon Phi

UCR-DTW*

Эксперименты

- Аппаратная платформа
 - Процессор
 - Intel Xeon X5680
 - 6 ядер по 3.33 GHz
 - 0.371 Тфлопс
 - Сопроцессор
 - Intel Xeon Phi SE10X
 - 61 ядро по 1.1 GHz
 - 1.076 Тфлопс
- ▶ Данные
 - Синтетические
 - \blacksquare random walk, 10^9 точек данных
 - Реальные
 - lacktriangle ЭКГ, $2 imes 10^7$ точек данных (22 час. при частоте дискретизации 250 Гц)

Производительность на синтетических данных

Данные: random walk, 10^9 точек

Производительность на реальных данных

Данные: ЭКГ, 2×10^7 точек

Утилизация сопроцессора

Влияние размера очереди на производительность

До векторизации DTW

```
double DTW(a: array [1..m], b: array [1..m], r: int) {
 cost := array [1..m]
 cost prev := array [1..m]
 for i := 1 to m
   cost[i] = infinity
   cost prev[i] = infinity
 cost prev[1] = dist(a[1], b[1])
 for j := max(2, i-r) to min(m, i+r)
    cost prev[j] := cost prev[j-1] + dist(a[1], b[j])
 for i := 2 to m
    for j := max(1, i-r) to min(m, i+r)
      c := d(a[i], b[i])
       cost[j] := c + min(cost[j-1], cost prev[j-1], cost prev[j])
    swap (cost, cost prev)
 return cost prev[m]
```

После векторизации DTW

```
double DTW(a: array [1..m], b: array [1..m], r: int) {
cost := array [1..m]
 cost prev := array [1..m]
 for i := 1 to m
   cost[i] = infinity
   cost prev[i] = infinity
 cost prev[1] = dist(a[1], b[1])
 for j := max(2, i-r) to min(m, i+r)
   cost prev[j] := cost prev[j-1] + dist(a[1], b[j])
 for i := 2 to m
   for j := max(1, i-r) to min(m, i+r)
      cost[j] = min(cost prev[j-1], cost prev[j])
   for j := max(1, i-r) to min(m, i+r)
      c := dist(a[i], b[j])
      cost[j] := c + min(cost[j-1], cost[j])
    swap (cost, cost prev)
 return cost prev[m]
```

Влияние векторизации DTW на производительность

Сравнение с аналогами (производительность)

Sart et al. Accelerating dynamic time warping subsequence search with GPUs and FPGAs // ICDM, 2010. Длина запроса: 1024

Intel Xeon X5680 + Xeon Phi SE10X	1.44 TFLOPS
NVIDIA Tesla C1060	77.8 GFLOPS
Xilinx Virtex-5 LX-330	65 GFLOPS
NVIDIA Tesla K40	1.43 TFLOPS
Xilinx Virtex-7 980XT	0.99 TFLOPS

Сравнение с аналогами (стоимость)

Intel Xeon X5680 + Xeon Phi SE10X	1.44 TFLOPS
NVIDIA Tesla C1060	77.8 GFLOPS
Xilinx Virtex-5 LX-330	65 GFLOPS
NVIDIA Tesla K40	1.43 TFLOPS
Xilinx Virtex-7 980XT	0.99 TFLOPS

Заключение

- ► Разработан параллельный алгоритм поиска похожей подпоследовательности временного ряда для сопроцессоров Intel Xeon Phi
- Эксперименты показали высокую эффективность алгоритма при большой длине запроса
- Будущие исследования:
 - адаптация для решения задачи local-best-match
 - алгоритм для узла с несколькими сопроцессорами Intel Xeon Phi
 - алгоритм для кластерной системы с узлами на базе сопроцессоров Intel Xeon Phi